Taube Nagetiere hören mit Licht - Auf dem Weg zum optischen Cochlea-Implantat
Direktzugriff
Artikelaktionen
Das Innenohr- oder Cochlea-Implantat (CI) ermöglicht über 700.000 hochgradig schwerhörigen und tauben Menschen weltweit wieder zu hören. Dabei wird der Hörnerv bisher durch elektrische Impulse stimuliert. Die Qualität dieses künstlichen Hörens unterscheidet sich stark von natürlichem Hören. Durch die ausgedehnte Stromausbreitung in der Gehörschnecke werden statt weniger Nervenzellen große Nervenzellgruppen aktiviert – vergleichbar mit dem Spielen eines Klaviers mit Boxhandschuhen statt mit einzelnen Fingern. CI-Träger*innen können zwar in 1:1-Gesprächen kommunizieren, sind aber bei Umgebungsgeräuschen und mehreren Sprechern häufig auf Lippenlesen angewiesen. Auch der Musikgenuss ist eingeschränkt. Eine grundlegende Verbesserung verspricht die zielgenaue Anregung des Hörnervs mit Licht.
Nach 12 Jahren Forschung zu grundlegenden Fragen zum Hören mit Licht ist die Hörforschung am Göttingen Campus um Prof. Dr. Tobias Moser, Direktor des Instituts für Auditorische Neurowissenschaften der Universitätsmedizin Göttingen (UMG), auf dem Weg zur Entwicklung eines optischen Cochlea-Implantats in Richtung klinische Anwendbarkeit. In Zusammenarbeit mit einem von Dr. Patrick Ruther geleiteten Team von Ingenieuren des Instituts für Mikrosystemtechnik (IMTEK) der Albert-Ludwigs-Universität Freiburg konnte ein für Langzeituntersuchungen geeignetes optisches Cochlea-Implantat System mit integrierten Mikro-Leuchtdioden (μLEDs) entwickelt werden. Im Tiermodell der menschlichen Schwerhörigkeit stimuliert dieses System den zuvor gentechnisch lichtempfindlich gemachten Hörnerv zielgenau mit optischen Pulsen. Das System ist viel kleiner und leichter als das klinisch genutzte CI und kann daher auch bei Nagetieren eingesetzt werden. Die Wissenschaftler sind noch einen wichtigen Schritt weiter gegangen und zeigen anhand von Verhaltensexperimenten, dass das optische CI tauben Nagetieren das Hören wieder ermöglicht – und das über Wochen. Veröffentlicht wurden die For-schungserkenntnisse am 22. Juli 2020 in der renommierten Fachzeitschrift „Sci-ence Translational Medicine“.
Originalveröffentlichung: Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. Daniel Keppeler*, Michael Schwaerzle*, Tamas Harczos*, Lukasz Jablonski, Alexander Dieter, Betti-na Wolf, Suleman Ayub, Christian Vogl, Christian Wrobel, Gerhard Hoch, Khaled Abdellatif, Marcus Jeschke, Vladan Rankovic, Oliver Paul, Patrick Ruther, Tobias Moser, Science Translational Medicine, 22.07.2020, doi: 10.1126/scitranslmed.abb8086; * equal contribution
Forschungsergebnisse im Detail
Erstmals konnte die Funktionalität der neu entwickelten Cochlea-Implantate mit bis zu 10 μLEDs, die eine Kantenlänge von lediglich 0,25 Millimetern aufweisen, über einen Zeitraum von über einem Monat im Tiermodell getestet werden: Im Vorfeld der Experimente bekamen die Nager ein harmloses Virus injiziert, um ihren Hör-nerv über molekulare Lichtschalter (Kanalrhodopsine) lichtempfindlich zu machen. Mit Hilfe von akustischen Reizen wurden die Tiere auf eine Verhaltensreaktion trainiert, danach medikamentös hörgeschädigt und mit einem optischen CI ver-sorgt. „Erstaunlicherweise zeigten einige taube Tiere sofort das gleiche Verhalten auf das Lichtsignal wie zuvor bei normalem Hören im Training auf einen gespielten Ton. Dies könnte darauf hindeuten, dass die optische Stimulation dem natürlichen Höreindruck nahekommt“, sagt Dr. Daniel Keppeler, einer der Erstautoren der Publikation und Mitarbeiter am Institut für Auditorische Neurowissenschaften, UMG.
Um diesen Entwicklungsschritt zu erreichen, mussten die LED-Sonden gut verkapselt werden. Damit sollten die empfindlichen elektronischen Bauteile vor der in der Gehörschnecke befindlichen Salzlösung geschützt werden. „Die größte Herausfor-derung liegt für uns in der Verkapselung der Implantate. Sie ist entscheidend für deren Langzeitstabilität im Tiermodell“, sagt Dr. Michael Schwärzle, Erstautor und ehemaliger Mitarbeiter am Institut für Mikrosystemtechnik der Universität Freiburg.
Ebenso wichtig für das Gelingen der Verhaltensexperimente über mehrere Wochen war die Entwicklung eines mobilen Prozessors am Institut für Auditorische Neuro-wissenschaften in Göttingen. Die kleine Recheneinheit wandelt Umgebungsgeräu-sche über ein integriertes Mikrofon in elektrische Signale um und überträgt diese an das optische CI. In der Miniaturisierung des optischen Cochlea-Implantats für die Testung an Nagetieren lag eine weitere Herausforderung für das interdisziplinäre Wissenschaftlerteam. Es sollte möglichst leicht sein, damit die Tiere es ohne Probleme im Verhaltensexperiment tragen können. Gerade mal 15 Gramm wiegt das gesamte CI-System, das entspricht etwa einem Esslöffel Zucker.
Diese Studie legt einen weiteren wichtigen Grundstein auf dem Weg zum Medizinprodukt in der klinischen Anwendung. Zukünftige Herausforderungen liegen in der Erhöhung der Kanalanzahl sowie der Weiterentwicklung zu noch besserer Lang-zeitstabilität und Sicherheit. „Das elektrische CI, mit dem wir uns in der klinischen Übertragbarkeit messen dürfen, setzt die Messlatte im Bereich Langzeitstabilität besonders hoch“, sagt Dr. Tamas Harzcos, Erstautor und Wissenschaftler am Institut für Auditorische Neurowissenschaften, UMG.
„Bei der interdisziplinären Entwicklung hat uns sehr geholfen, dass wir als Team von Ingenieuren vor Ort sein konnten und direkt an den Implantationsversuchen beteiligt waren. Diese Zusammenarbeit ermöglichte uns neue Einblicke ins biomedizinische Umfeld, die die technische Entwicklung stark unterstützen. Wir haben eine gemeinsame Sprache zwischen Medizinern und Technologen gefunden und voneinander viel gelernt“, sagt Dr. Patrick Ruther, Seniorautor und Arbeitsgruppenleiter am Institut für Mikrosystemtechnik der Universität Freiburg.
„Die Entwicklung von Gentherapie und optischen CIs für die klinische Anwendung stellt uns und Kollegen weltweit vor große Herausforderungen, die nur in multidis-ziplinärer Zusammenarbeit bewältigt werden können.“, sagt Prof. Dr. Tobias Moser, Seniorautor der Publikation und Sprecher des Exzellenzclusters Multiscale Bioima-ging (MBExC) und des Sonderforschungsbereichs 889 an der UMG.
Die Forschung am optischen CI wurde umfangreich gefördert, durch das Bundesministerium für Bildung und Forschung, den Europäischen Forschungsrat und die Deutsche Forschungsgemeinschaft. Tobias Moser, Daniel Keppeler und weitere Kollegen haben zum Zwecke der Vorbereitung der klinischen Studie das Göttinger Unternehmen OptoGenTech aus der Universitätsmedizin Göttingen ausgegründet.
Hintergrund: Hören mit Cochlea-Implantat – mit Strom und mit Licht
Nach Schätzungen der Weltgesundheitsorganisation WHO wird sich die Zahl der Menschen mit Hörverlust und Taubheit bis zum Jahr 2050 um 52 Prozent auf ins-gesamt 900 Millionen Menschen erhöhen. Bislang gibt es keinen ursächlichen Therapieansatz für das Innenohr.
Patient*innen mit hochgradigem Hörverlust oder gar Taubheit kann aktuell mit elektrischen Cochlea-Implantaten (CI) geholfen werden. Das CI ist eine implantierbare Hörprothese, die Umgebungsgeräusche über einen externen Sprachprozessor aufnimmt, umwandelt und das Signal auf implantierte Elektroden in der Gehörschnecke überträgt. Dabei werden die defekten oder nicht-vorhandenen Haarzellen umgangen und die Hörnervenzellen durch Stromimpulse direkt ange-regt. Dieses Signal wird dann entlang der Hörbahn bis zur Hirnrinde weiterverarbeitet. Ein Problem beim Hören entsteht durch die elektrische Reizung in der mit Salz-lösung gefüllten Cochlea: Trotz vieler Bemühungen lässt sich der Strom nicht aus-reichend räumlich begrenzen. So werden viele Nervenzellen, die für ein breites Spektrum an Tonhöhen zuständig sind, gleichzeitig elektrisch angeregt. Die Zahl der unabhängigen Stimulationskanäle sind hier typischerweise auf unter zehn begrenzt.
Die Anregung mit gerichtetem Licht verspricht, den Hörnerv gezielter zu reizen. Dafür müssen Viruspartikel in die Hörschnecke eingebracht werden, die einen molekularen Lichtschalter in die Hörnervenzellen einbauen. Dieser lässt sich mit Hilfe von schwachen Lichtpulsen aktivieren und imitiert so die Funktion der Haar-zellen. Hören mit Licht könnte zukünftig CI-Nutzern eine feinere Unterscheidung von Tonhöhen, und somit ein besseres Verstehen von Sprache in lauter Umgebung sowie größeren Musikgenuss ermöglichen.
Hören mit Strom und mit Licht:
owncloud.gwdg.de/index.php/s/4dvuNXpdpHgyFbv Satz: natürliches Hören
Satz_8Chan: Simulation des Hörens mit dem elektrischen Cochlea Implantat (8 Frequenzkanäle)
Satz_64Chan: Simulation des Hörens mit dem zukünftigen optischen Cochlea Implantat (64 Frequenzkanäle)
Das Göttinger Exzellenzcluster 2067 Multiscale Bioimaging: Von molekularen Maschinen zu Netzwerken erregbarer Zellen (MBExC) wird seit Januar 2019 im Rahmen der Exzellenzstrategie des Bundes und der Länder gefördert. Mit einem ein-zigartigen interdisziplinären Forschungsansatz untersucht MBExC die krankheitsrele-vanten Funktionseinheiten elektrisch aktiver Herz- und Nervenzellen, von der moleku-laren bis hin zur Organebene. Hierfür vereint MBExC zahlreiche universitäre und außeruniversitäre Partner am Göttingen Campus. Das übergeordnete Ziel ist: den Zusammenhang von Herz- und Hirnerkrankungen zu verstehen, Grundlagen- und klinische Forschung zu verknüpfen, und damit neue Therapie- und Diagnostikansätze mit gesellschaftlicher Tragweite zu entwickeln.
Weitere Informationen:
zum Institut für Auditorische Neurowissenschaften: www.auditory-neuroscience.uni-goettingen.de
zum MBExC: mbexc.de
WEITERE INFORMATIONEN Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Auditorische Neurowissenschaften und Exzellenzcluster MBExC
Prof. Dr. Tobias Moser
Robert-Koch-Str. 40, 37075 Göttingen
Telefon 0551 / 39-63071, tmoser(at)gwdg.de
Albert-Ludwigs-Universität Freiburg
Institut für Mikrosystemtechnik (IMTEK)
Professur für Materialien der Mikrosystemtechnik und
Exzellenzcluster BrainLinks-BrainTools
Dr. Patrick Ruther
Georges-Köhler-Allee 103, 79110 Freiburg
Telefon 0761/203-7197, ruther@imtek.de
Fußzeile
Benutzerspezifische Werkzeuge